Friday, November 10, 2017

Two handy helper for Windows user

# get Window path
ss_getwinpath <- function(aPath = "clipboard") {
y <- if (aPath == "clipboard") {
readClipboard()
} else {
cat("Please enter the path:\n\n")
readline()
}

x <- chartr("\\", "/", y)
writeClipboard(x)

return(x)
}

# send object to clipboard for excel
ss_send2excel <- function(aObj) {
write.table(aObj, file="clipboard-16384", sep="\t", row.names=FALSE, col.names=TRUE)
}


Put here: C:\Program Files\R\R-3.4.2\library\base\R\Rprofile
detail for configuration: https://getpocket.com/a/read/717423088

Thursday, November 9, 2017

Write to multiple sheets in R (xlsx, XLConnect and openxlsx)

xlsx works in the end after the JAVA memory issue

 XLConnect and openxlsx doese not work

# deal with JAVA issues
# # Error in .jcall("RJavaTools", "Ljava/lang/Object;", "invokeMethod", cl,  :
# https://stackoverflow.com/questions/21937640/handling-java-lang-outofmemoryerror-when-writing-to-excel-from-r
# https://stackoverflow.com/questions/7019912/using-the-rjava-package-on-win7-64-bit-with-r
options(java.parameters = "-Xmx4g")
options(java.home="C:/Program Files/Java/jdk1.8.0_144/jre/bin/server")
library(rJava)
library(xlsx)

jgc <- function()
{
  gc()
  .jcall("java/lang/System", method = "gc")


if(!file.exists(FILE_OUT_RESULT)){
  file.rename(FILE_OUT_RESULT, FILE_OUT_RESULT_BKP)
}

# map2(dfToSave, dfToSaveSheetName,
#      ~write.xlsx(.x, file=FILE_OUT_RESULT, sheetName=.y,
#                  col.names=TRUE, row.names=TRUE, append=TRUE, showNA=TRUE))

wb <- createWorkbook() 
for(i in seq_along(dfToSave)){
  jgc()
  message("Creating sheet", i)
  sheet <- createSheet(wb, sheetName = dfToSaveSheetName[[i]])
  message("Adding data frame", i)
  addDataFrame(dfToSave[[i]], sheet)
}
saveWorkbook(wb, FILE_OUT_RESULT)



# # XLConnect ---------------------------------------------------------------
# # too loop to response
# options(java.parameters = "-Xmx4g" )
# library(XLConnect)
# outputWB <- loadWorkbook(FILE_OUT_RESULT,  create=TRUE)
# for(i in seq_along(dfToSave)){
#   createSheet(outputWB, name=dfToSaveSheetName[[i]])
# }
#
# for(i in seq_along(dfToSave)){
#   writeWorksheet(outputWB,
#                  dfToSave[[i]],
#                  sheet = dfToSaveSheetName[[i]])
# }
# saveWorkbook(outputWB)
#
# # openxlsx ----------------------------------------------------------------
# #input string 9903 is invalid UTF-8
# library(openxlsx)
# wb <- createWorkbook()
# map(dfToSaveSheetName, ~ addWorksheet(wb, .x))
# map2(dfToSave, dfToSaveSheetName, ~ writeData(wb = wb, sheet = .y, x=.x))
# saveWorkbook(wb, FILE_OUT_RESULT, overwrite = TRUE)

A framework for processing multiple text files


use mget, list2env and map to build the workflow.

#################################
# !diagnostics off
library(tidyverse)
library(readr)
library(stringr)


# Set up dir ------------------------------------------------------------------
DIR_PRJBASE <- 'C:/Users/UserName/ProjectBase'

DIR_SCRIPT <- file.path(DIR_PRJBASE)
setwd(DIR_SCRIPT)

DIR_INPUT <- file.path(DIR_PRJBASE, 'input')
DIR_MIDPUT <- file.path(DIR_PRJBASE, 'midput')
DIR_OUTPUT <- file.path(DIR_PRJBASE, 'output')


# Data steps --------------------------------------------------------------
FILE_SRC_DATA_RAW_1   <- file.path(DIR_INPUT, 'datafile1.csv')
FILE_SRC_DATA_RAW_2 <- file.path(DIR_INPUT, 'datafile2.csv')
FILE_SRC_DATA_RAW_3  <- file.path(DIR_INPUT, 'datafile3.csv')


FILE_OUT_RESULT   <- file.path(DIR_OUTPUT, 'Result.xlsx')
FILE_OUT_RESULT_BKP <- file.path(DIR_OUTPUT, 'Result.xlsx.baK')


# Helpers -----------------------------------------------------------------
step1 <- function(aDf) {
  aDf %>%
    mutate(Email = str_to_lower(str_trim(Email))) ->
    ret
  return(ret)
}

step2 <- function(aDf){
  aDf %>%
    mutate_if(is.character, str_trim, side = 'both') ->
    ret
 
  return(ret)
}

emailSubtract <- function(aSrcDf, aFromDf) {
  aSrcDf %>%
    filter(!(Email %in% aFromDf$Email)) ->
    ret
 
  return(ret)
}


# Load data: Unsubscription ---------------------------------------------------------------
dfRaw_UNSUB <- read.csv(col.names = c('Email'),
                        header = FALSE,
                        FILE_SRC_DATA_RAW_UNSUB)

dfRaw_ENT  <- read_csv(FILE_SRC_DATA_RAW_ENT)
dfRaw_MISC <- read_csv(FILE_SRC_DATA_RAW_MISC)
dfRaw_SMB  <- read_csv(FILE_SRC_DATA_RAW_SMB)


# Clean up ---------------------------------------------------------------
dfNameCore <- c('ENT', 'MISC', 'SMB')
dfRawNames   <- paste0('dfRaw_', dfNameCore)

newColNames <- c('FirstName', 'LastName',
                 'Title',
                 'Email', 'DirectPhone', 'CompanyPhone', 'CompanyName')
list2env(map(mget(dfRawNames), setNames, newColNames), .GlobalEnv)

dfNameCore <- c('UNSUB', dfNameCore)
dfRawNames   <- paste0('dfRaw_', dfNameCore)
dfCleanNames <- paste0('dfClean_', dfNameCore)

mget(dfRawNames) %>%
  map(distinct) %>%
  map(trimAllColumns) %>%
  map(cleanEmail) %>%
  set_names(paste0('dfClean_', dfNameCore)) %>%
  list2env(.GlobalEnv)


stats <- data.frame(DataSet = dfNameCore,
                    RowsInRaw      = map_int(mget(dfRawNames),   nrow),
                    RowsInClean    = map_int(mget(dfCleanNames), nrow),
                    UniqueEmailsInRaw   = map_int(mget(dfRawNames),   ~ length(unique(.x$Email))),
                    UniqueEmailsInClean = map_int(mget(dfCleanNames), ~ length(unique(.x$Email))),
                    row.names = NULL)


# Substract ---------------------------------------------------------------
df_ENT_UNSUB  <- emailSubtract(dfClean_ENT,  dfClean_UNSUB)
df_SMB_UNSUB  <- emailSubtract(dfClean_SMB,  dfClean_UNSUB)
df_MISC_UNSUB <- emailSubtract(dfClean_MISC, dfClean_UNSUB)

dim(dfClean_ENT)[1]  - dim(df_ENT_UNSUB)[1]
dim(dfClean_SMB)[1]  - dim(df_SMB_UNSUB)[1]
dim(dfClean_MISC)[1] - dim(df_MISC_UNSUB)[1]


# Further Substract ---------------------------------------------------------------
df_ENT_UNSUB_MISC <- emailSubtract(df_ENT_UNSUB, df_MISC_UNSUB)
df_SMB_UNSUB_MISC <- emailSubtract(df_SMB_UNSUB, df_MISC_UNSUB)

dim(df_ENT_UNSUB)[1] - dim(df_ENT_UNSUB_MISC)[1]
dim(df_SMB_UNSUB)[1] - dim(df_SMB_UNSUB_MISC)[1]


# Save result -------------------------------------------------------------
dfToSave <- mget(c(dfRawNames, dfCleanNames,
                   c('df_ENT_UNSUB', 'df_SMB_UNSUB', 'df_MISC_UNSUB',
                     'df_ENT_UNSUB_MISC', 'df_SMB_UNSUB_MISC')))
dfToSaveSheetName <- c(paste0('Raw ',dfNameCore), paste0('Clean ',dfNameCore),
                       c('ENT remove UNSUB', 'SMB remove UNSUB', 'MISC remove UNSUB',
                         'ENT remove UNSUB and MISC', 'SMB remove UNSUB and MISC'))

# deal with JAVA issues
# # Error in .jcall("RJavaTools", "Ljava/lang/Object;", "invokeMethod", cl,  :
# https://stackoverflow.com/questions/21937640/handling-java-lang-outofmemoryerror-when-writing-to-excel-from-r
# https://stackoverflow.com/questions/7019912/using-the-rjava-package-on-win7-64-bit-with-r
options(java.parameters = "-Xmx4g")
options(java.home="C:/Program Files/Java/jdk1.8.0_144/jre/bin/server")
library(rJava)
library(xlsx)

jgc <- function()
{
  gc()
  .jcall("java/lang/System", method = "gc")


if(!file.exists(FILE_OUT_RESULT)){
  file.rename(FILE_OUT_RESULT, FILE_OUT_RESULT_BKP)
}

# map2(dfToSave, dfToSaveSheetName,
#      ~write.xlsx(.x, file=FILE_OUT_RESULT, sheetName=.y,
#                  col.names=TRUE, row.names=TRUE, append=TRUE, showNA=TRUE))

wb <- createWorkbook() 
for(i in seq_along(dfToSave)){
  jgc()
  message("Creating sheet", i)
  sheet <- createSheet(wb, sheetName = dfToSaveSheetName[[i]])
  message("Adding data frame", i)
  addDataFrame(dfToSave[[i]], sheet)
}
saveWorkbook(wb, FILE_OUT_RESULT)